Problems on Inference-I

1. For double genetically data with some value of π , for both parents, following distribution is obtained:

	D1D2	D1R2	D2R1	R1R2
Frequency:	190	36	34	27
Probability:	$\frac{2+p}{4}$	$\frac{1-p}{4}$	$\frac{1-p}{4}$	$\frac{p}{4}$

where $p = (1 - \pi)^2$. Find Maximum Likelihood Estimate of π and estimate its standard error.

2. A random sample of size 20 is drawn from a population with the probability density function $f(x,\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}; x, \theta > 0$ and the sample mean comes out to be 12.6. Find MLE of θ . How do you modify the estimate if 2 sample observations are known to exceed value 60 only? Also how do you modify in drawing the sample observation exceeding 60 is rejected.

3. Following data represent a random sample of size from the Cauchy population with the probability density function $f(x,\theta) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}; -\infty < x, \theta < \infty$. Find out the MLE of θ . The observations are 3.7807, 2.9957, 5.2043, 4.8993, 2.6874, 4.9557, 4.9367, 3.4996, 3.1674.

Without assuming any distribution, find out nonparametric estimate of mean and variance functional.

4. A random variable X takes values 0, 1, 2 with respective probabilities $\frac{\theta}{4N} + \frac{1}{2}\left(1 - \frac{\theta}{N}\right)$, $\frac{\theta}{2N} + \frac{\alpha}{2}\left(1 - \frac{\theta}{N}\right)$ and $\frac{\theta}{4N} + \frac{1 - \alpha}{2}\left(1 - \frac{\theta}{N}\right)$, where N=25 is a known number and α , θ are unknown parameters. If 75 independent observations on X yielded the values 27, 38, 10 respectively, estimate θ and α by method of moments.

5. Consider the problem of point estimation of θ in $N(\theta,1)$. Given that θ belongs to [-1, 1]. On the basis of a sample of size n, the following estimator has been defined.

T=-1 if
$$\overline{X} < -1$$

= \overline{X} if $-1 \le \overline{X} \le 1$
= 1 if $\overline{X} > 1$

 \overline{X} being sample mean. Assuming (i) squared error loss and (ii) absolute error loss draw the risk curve of \overline{X} and T over the range $\theta \in [-1,1]$ on the same graph paper and comment. Take n=10.

6. The total amount of claims for each year from a portfolio of five insurance policies over *t* years were found to be $X_1, X_2, ..., X_t$. The insurer believes that the annual claims have a normal distribution with mean μ and variance σ^2 , where μ is unknown. The prior distribution of μ is assumed to be normal with mean γ and variance η^2 .

(i) Derive the posterior distribution of μ .

(ii) Using the posterior distribution found in (i), write down the Bayesian point estimate of μ under the quadratic (squared error) loss function.

(iii) Show that the answer in (ii) can be expressed in the form of a credibility estimate, and derive the credibility factor.

(iv) If one uses the all-or-nothing loss function, can the corresponding Bayesian estimate of μ be written as a credibility factor? Explain.

Let $(X_1, X_2, ..., X_t)=(1050, 1175, 1100, 1200, 1150), \sigma^2 = 400, \gamma = 1110, \eta^2 = 256.$ Evaluate (ii) and (iii). Draw the risk function of the Bayes estimate. Also calculate Bayes risk of the estimate.